Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

John Nicolson Low, ${ }^{\text {a* Justo }}$ Cobo, ${ }^{\text {b }}$ Manuel Nogueras, ${ }^{\text {b }}$ Adolfo Sánchez, ${ }^{\text {b }}$ Paola Andrea Cuervo ${ }^{c}$ and Rodrigo Abonia ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, ${ }^{\text {b }}$ Departamento de Química Inorgánica y Orgánica, Universidad de Jaén, 23071 Jaén, Spain, and ${ }^{\text {c }}$ Grupo de Investigación de Compuestos Heterocíclicos, Departamento de Química, Universidad del Valle, AA25360 Cali, Colombia

Correspondence e-mail:
jnlow111@hotmail.com

Key indicators

Single-crystal X-ray study
$T=120 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.058$
$w R$ factor $=0.155$
Data-to-parameter ratio $=14.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

3-(Benzotriazol-1-yl)-p-nitropropiophenone: sheets built from weak three-centred $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds

Molecules of the title compound, $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{3}$, are hydrogen bonded into undulating sheets lying perpendicular to the b axis by three-centred weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds involving the O atoms of the nitro group in molecules related by the c-axis glide plane.

Comment

The title compound, (I), was prepared for use as an intermediate (after α-bromination) in the synthesis of benzotriazolyl derivatives of dihydroquinoxalines, compounds with interesting optical (Schaller et al., 1967) and biological properties (Takahashi et al., 1977; Billhardt et al., 1993).

(I)

There are no unusual bond distances or angles in the molecule, which is shown in Fig. 1.

The molecules of (I) are hydrogen bonded into undulating sheets parallel to (010) by three-centred weak $\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{O}$ hydrogen bonds involving the O atoms, O 141 and O 142 , of the nitro group (see Table 1 for hydrogen-bonding data and for the symmetry codes). Each molecule links head-to-tail to two other molecules related to it by a c-glide plane. C5-H5 links to $\mathrm{O} 141^{\mathrm{i}}$ and to $\mathrm{O} 142^{\mathrm{ii}}$. The angle sum at H 5 is 356°. These hydrogen bonds form interlocking $C(15)$ chains (Bernstein et al., 1995), as shown in Fig. 2, with the result that $\mathrm{H} 5^{\mathrm{i}}$ and $\mathrm{H} 5^{\mathrm{ii}}$ link to the molecule at $(1+x, y, 1+z)$ to form an $R_{3}^{4}(34)$ ring (Bernstein et al., 1995), thus generating a sheet of interlocked rings. Fig. 2 shows a view of the sheet.

In addition, there are several short $\mathrm{C}-\mathrm{H} \cdots \pi$ contacts in the range 2.68 to $2.84 \AA$ with $\mathrm{C}-\mathrm{H} \cdots C g$ angles in the range 121 to 130°, in which the centres of gravity are $C g 1$ (ring 1 $\mathrm{C} 3 A / \mathrm{C} 4 / \mathrm{C} 5 / \mathrm{C} 6 / \mathrm{C} 7 / \mathrm{C} 7 A$) and Cg 2 (ring $2 \mathrm{C} 11 / \mathrm{C} 12 / \mathrm{C} 13 / \mathrm{C} 14 /$ $\mathrm{C} 15 / \mathrm{C} 16)$. These contacts are from H 13 and H 16 of ring 2 to $C g 1^{\text {iii }}$ and $C g 1^{\text {iv }}$, respectively, whilst there are contacts from $\mathrm{H} 4^{\mathrm{iii}}$ and $\mathrm{H} 7^{\text {iv }}$ to Cg 2 . Since the molecules are stacked head-totail, there are similar contacts from H 4 and H 7 to $\mathrm{Cg} 2^{\mathrm{iii}}$ and $C g 2^{\text {iv }}$, respectively, whilst there are contacts from $\mathrm{H} 13^{\text {iii }}$ and $\mathrm{H} 16^{\text {iv }}$ to $C g 1$. These contacts are short and, despite the low angular range at H , appear to act co-operatively in stabilizing the packing of the structure. Fig. 3 shows a view of these contacts, which link the molecules in the different sheets. Their parameters are listed in Table 1.

Received 10 June 2002 Accepted 17 June 2002 Online 21 June 2002

Figure 1
A view of (I) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Examination of the structure with PLATON (Spek, 2002) showed that there were no solvent-accessible voids in the crystal lattice.

Experimental

A solution of 3-(dimethylamino)-p-nitropropiophenone hydrochloride ($0.5 \mathrm{~g}, 1.93 \mathrm{mmol}$), benzotriazole ($0.23 \mathrm{~g}, 1.93 \mathrm{mmol}$) and 5 ml of water was heated at 323 K for 5 min . After cooling, the solution was left overnight at room temperature. The resulting precipitate was filtered, washed with water, and purified by column chromatography on silica gel, with chloroform as eluent, giving a white solid (93% yield; m.p. 405 K). Crystals suitable for X-ray diffraction were collected from the solution in chloroform. Found: C 60.81, H 4.08, N 18.91%; calculated for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{3}$: C 60.78, H 4.12, N 18.89\%.

Crystal data

$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{3}$
$M_{r}=296.29$
Monoclinic, $P 2_{1} / c$
$a=5.9554$ (2) Å
$b=6.9671$ (3) \AA
$c=31.8248(13) \AA$
$\beta=96.8560(17)^{\circ}$
$V=1311.03(9) \AA^{3}$
$Z=4$

$$
D_{x}=1.501 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $\mathrm{K} \alpha$ radiation
Cell parameters from 2852 reflections
$\theta=3.0-27.5^{\circ}$
$\mu=0.11 \mathrm{~mm}^{-1}$
$T=120$ (2) K
Prism, orange
$0.50 \times 0.35 \times 0.08 \mathrm{~mm}$

Figure 2
A view the (010) sheets composed of $R^{4}{ }_{3}(34)$ rings formed by the interlocking $C(15)$ chains. The atoms labelled with an asterisk (*), dollar sign (\$) or hash mark (\#) are at the symmetry positions ($x,-y+1 / 2, z+1 / 2$), $(1+x,-y+1 / 2, z+1 / 2)$ and ($x,-y+1 / 2, z-1 / 2$), respectively.

Figure 3
A view of the short $\mathrm{C}-\mathrm{H} \cdots \pi$ contacts between the molecules at $(-x$, $y-1 / 2,-z+1 / 2)$, labelled with an asterisk (*), and at $(1-x, y+3 / 2,-z+1 / 2)$, labelled with a hash mark (\#). The unit cell is not shown, for clarity.

Data collection

Nonius KappaCCD diffractometer φ scans and ω scans with κ offsets Absorption correction: multi-scan
(DENZO-SMN; Otwinowski \&
Minor, 1997)
$T_{\text {min }}=0.927, T_{\max }=0.991$
6931 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.058$
$w R\left(F^{2}\right)=0.155$
$S=1.00$
199 parameters

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.079 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.29 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.33 \mathrm{e} \AA^{-3}$
2852 independent reflections
1820 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.093$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-7 \rightarrow 5$
$k=-9 \rightarrow 8$
$l=-40 \rightarrow 41$

Table 1
Hydrogen-bonding geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C5-H5 . .O141 ${ }^{\text {i }}$	0.95	2.59	3.286 (3)	131
$\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{O} 142^{\text {ii }}$	0.95	2.58	3.264 (3)	129
$\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{Cg} 2^{\mathrm{iii}}$	0.95	2.84	3.425 (2)	121
$\mathrm{C} 7-\mathrm{H} 7 \cdots \mathrm{Cg} 2^{\text {iv }}$	0.95	2.83	3.464 (2)	125
$\mathrm{C} 13-\mathrm{H} 13 \cdots \mathrm{Cg} 1^{\text {iii }}$	0.95	2.68	3.321 (2)	125
C16-H16 $\cdots \mathrm{Cg} 1^{\text {iv }}$	0.95	2.83	3.516 (2)	130

Symmetry codes: (i) $1+x, \frac{1}{2}-y, \frac{1}{2}+z$; (ii) $x, \frac{1}{2}-y, \frac{1}{2}+z$; (iii) $1-x, \frac{1}{2}+y, \frac{1}{2}-z$; (iv) $-x, y-\frac{1}{2}, \frac{1}{2}-z$.

H atoms were treated as riding atoms, with $\mathrm{C}-\mathrm{H}$ distances in the range 0.95-0.99 A.

Data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: DENZO-SMN (Otwinowski \& Minor, 1997); data reduction: $D E N Z O-S M N$; program(s) used to solve structure: SHELXS 97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976) and PLATON (Spek, 2002); software used to prepare material for publication: SHELXL97 and WordPerfect macro PRPKAPPA (Ferguson, 1999).

X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton. The authors thank the staff for all their help and advice. JNL thanks NCR Self-Service, Dundee, for grants which have provided computing facilities for this work.

References

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Billhardt, U. M., Roesner, M., Riess, G., Winkler, I. \& Bender, R. (1993). (Hoechst, A.-G.) Eur. Pat. Appl. EP 509 398; Chem. Abstr. (1993). 118, 234088s.

Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Nonius (1997). KappaCCD Server Software. Windows 3.11 Version. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.

Schaller, H., Schellenger, M., Schumacher, E., Steiger, R. \& Steinmetz, R. (1967). (CIBA Ltda) S. African 6802 222, 30 pp; Chem. Abstr. (1967). 70, 120033e.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2002). PLATON. Version of March 2002. University of Utrecht, The Netherlands.
Takahashi, H., Yajima, I., Iwasawa, Y., Kawamura, Y., Ohya, T. \& Hirai, K. (1977). Jpn Kokai 7790 628; Chem. Abstr. (1977). 87, 195547k.

